INTEGRATED PEST MANAGEMENT
T.G. GROUT

Thrips management
During October and November, citrus fruit are highly susceptible to damage from citrus thrips and orchards should be scouted at least once a week for this pest. This scouting should include looking under the sepals. citrus thrips larvae cause more serious damage than adult thrips so low numbers of adults in the absence of larvae may not require immediate intervention. The intervention threshold for citrus thrips larvae is 2% for the first four weeks after petal fall, 3% for five to six weeks after petal fall, then 4% for seven to eight weeks after petal fall. These thresholds can be approximately doubled if the population comprises mostly adults. If thripicide treatments are required, use products suited to both the thrips population density and the spray machinery available for reapplication at short notice. The use of dedicated spray machines for the rapid application of thrips baits prevents clashes with black spot and red scale spray programmes. citrus thrips are genetically predisposed towards developing resistance to pesticides so avoid spraying two consecutive sprays of the same active ingredient. Treatments that give 6-8 weeks thrips’ control will eliminate natural enemies of false codling moth, mealybug and scale insects for a month or more so if this degree of control is required it is best to spray these at petal fall and follow up with softer options when necessary.

S.D. MOORE

Parasitoid releases
The Aphytis red scale parasitoid is no longer commercially available. However, the FCM parasitoid, Trichogrammatoideaecryptophaebliae, is once again commercially available from certain insectaries. Growers planning to augment parasitoids for mealybug or FCM control should initiate releases as early in the new season as possible. Augmentative releases of parasitoids are not a corrective option, and growers should therefore not wait until the pest reaches a problematic level. Research trials with both mealybug and FCM parasitoids indicate that better suppression of the pest is achieved with releases initiated as early as October.

Preventative sprays for mealybug
Pre-harvest blemish analyses or winter inspections of trees might have indicated that preventative spraying for mealybug is unnecessary. This can be confirmed or refuted by inspecting fruit in October and November for the presence of mealybug. Sprays applied before calyx closure will most likely be more effective than those applied thereafter. An infestation level in excess of approximately 5% at petal fall, or up to 20% six weeks after petal fall, indicates the need for immediate chemical intervention. Anything short of an absolutely thorough full cover film spray will compromise the effectiveness of a chemical treatment.

It appears that the biocontrol complexes of oleander mealybug and long-tailed mealybug, in particular, may not be as effective as that of citrus mealybug. Therefore, more conservative treatment thresholds can be used when either of these species is identified as the dominant species in a particular orchard. If citrus mealybug is not the dominant species, augmentative releases of Coccioidoxenoidesperminatus should be considered unsuitable.

Note that the preharvest interval for Applaud (buprofezin) is 45 days for most citrus varieties and markets. This means that this product can therefore be used later in the season than chlorpyrifos. Note that methidathion cannot be used after 90% petal fall for several markets.

Bollworm
In many regions, it might already have been necessary to treat bollworm during September. However, routine spraying for bollworm is generally not necessary. By monitoring the percentage of blossom clusters infested, it will be possible to determine whether a spray is necessary. A treatment should be applied when more than 20% of blossom clusters are infested with larvae or mature eggs. Enlarged navel end problems in navel oranges can be further exacerbated by bollworm attack. In such an instance, a threshold of 11% of clusters infested should be used.

Two biocontrol options are available for the control of bollworm. These are DiPel (Bt) and Helicovir, which is a formulated virus. In order to be effective, both should be applied immediately after egg hatching and certainly not once larvae are longer than a centimetre in length.

Lemon borer moth
Moths of the lemon borer moth (or citrus flower moth), Prays citri, are attracted to lemon blossoms. Growers should inspect these blossoms in spring to determine whether they are infested with larvae or pupae. These can be identified by their colouration, which is usually greenish and the association of webbing with pupation. Even if the damage to, and loss of blossom is not considered sufficiently severe to justify control measures, no intervention will allow the development of a second generation. It is the moths of this second generation which lay their eggs on
to be applied where required to reduce inter-fruit competition and optimise fruit growth.

The acidity of fruit at harvest is largely determined within 6 weeks of fruit growth and development. Therefore, only minor modifications to acidity can be achieved. Under conditions of anticipated high acidity at harvest, mono-ammonium phosphate (MAP) or mono-potassium phosphate (MKP) can be applied at 1%, i.e. 1 kg per 100 litres of water, 6 weeks after full bloom. Please note that these phosphate sources have not been tested on all citrus cultivars; until now 1% MAP or MKP have reduced acidity on Valencia orange and Templetangor, but not on grapefruit.

Pruning of late cultivars should be done during this period as soon as possible after harvest. Pruning improves the light distribution inside the tree and improves the quality of the bearing wood inside the tree. Pruning can also be used as a thinning technique. Prune heavier after a light crop if a heavy crop is expected and when the orchard has a history of alternate bearing.

Regrowth control, especially after heavy pruning earlier in the season, should commence. A lot of regrowth adversely affects fruit size and is antagonistic to fruit colour development, especially for early maturing cultivars.

CROP AND FRUIT QUALITY MANAGEMENT

J.S. VERREYNNE

Fruit set

Treatments according to cultivar requirements need to be applied. Specific treatments include the application of gibberellic acid (GA) and girdling especially for parthenocarpic cultivars that have a poor set. A general guideline cannot be given as fruit set treatments differ by cultivar and, in many cases, by orchard depending on previous crop load. Girdling during full bloom improves set. Moisture stress should be avoided during full bloom, fruit set and early fruit growth.

Fruit growth

Must be optimised during stage 1 of fruit development. Optimal nutrition and irrigation practices are required. In addition, thinning practices (chemical or hand thinning) need to be applied where required to reduce inter-fruit competition and optimise fruit growth.

The acidity of fruit at harvest is largely determined within 6 weeks of fruit growth and development. Therefore, only minor modifications to acidity can be achieved. Under conditions of anticipated high acidity at harvest, mono-ammonium phosphate (MAP) or mono-potassium phosphate (MKP) can be applied at 1%, i.e. 1 kg per 100 litres of water, 6 weeks after full bloom. Please note that these phosphate sources have not been tested on all citrus cultivars; until now 1% MAP or MKP have reduced acidity on Valencia orange and Templetangor, but not on grapefruit.

Pruning of late cultivars should be done during this period as soon as possible after harvest. Pruning improves the light distribution inside the tree and improves the quality of the bearing wood inside the tree. Pruning can also be used as a thinning technique. Prune heavier after a light crop if a heavy crop is expected and when the orchard has a history of alternate bearing.

Regrowth control, especially after heavy pruning earlier in the season, should commence. A lot of regrowth adversely affects fruit size and is antagonistic to fruit colour development, especially for early maturing cultivars.

GRONDEGRAAGDE SIEKTES

M.C. PRETORIUS

Aalwurms

Grond- en wortelmonsters kan nou in die lente getrek word en na die Diagnostiese Sentrum in Nelspruit gestuur word vir ontleiding sodat die aalwurmpopulasie status in die wortels bepaal kan word. Die resultaat sal dien as 'n besluitvormingsmiddel om hy koste doeltreffende aalwurmbestuurstrategie daar te stel.

Die gebruik van chemiese aalwurmdoders vir die beheer van die aalwurms op die volgende kultivars kan nou in die lente getrek word: diesel aalwurms in onderskeidelik die granulovirus (FCM) en die granulovirus (FCM) in export cartons. As soon after harvesting as possible, all out of season fruit should be removed from trees and destroyed. These fruit can act as a reservoir for FCM and fruit flies, enabling particularly the former to carry over to the new crop set in spring.

Field observations indicate that the removal and destruction of out of season fruit can have a significant impact in reducing FCM populations later on and any extra labour required is well worthwhile.

Recommendations for the use of Isomate (mating disruption)

Are that it should be hung during early October. It is imperative that these traps be hung strictly according to the recommendations on the label. The Lorelei trapping system can still be ordered from CRI. This trapping system is recommended, as it has been thoroughly researched, the dispenser releases pheromone at a constant rate, and threshold values can be ascribed to trap catches.

Growners wishing to control FCM with Cryptorganor Cryptex(FCM granulovirus) should apply the first treatment no later than the end of November or early December — aimed against the flight peak which occurs at this time in all production areas.

Recommendations for the use of Isomate (mating disruption)

Are that it should be hung during early October. It is imperative that these traps be hung strictly according to the recommendations on the label. The Lorelei trapping system can still be ordered from CRI. This trapping system is recommended, as it has been thoroughly researched, the dispenser releases pheromone at a constant rate, and threshold values can be ascribed to trap catches.

Growners wishing to control FCM with Cryptorganor Cryptex(FCM granulovirus) should apply the first treatment no later than the end of November or early December — aimed against the flight peak which occurs at this time in all production areas.

Recommendations for the use of Isomate (mating disruption)

Are that it should be hung during early October. It is imperative that these traps be hung strictly according to the recommendations on the label. The Lorelei trapping system can still be ordered from CRI. This trapping system is recommended, as it has been thoroughly researched, the dispenser releases pheromone at a constant rate, and threshold values can be ascribed to trap catches.

Growners wishing to control FCM with Cryptorganor Cryptex(FCM granulovirus) should apply the first treatment no later than the end of November or early December — aimed against the flight peak which occurs at this time in all production areas.

Recommendations for the use of Isomate (mating disruption)

Are that it should be hung during early October. It is imperative that these traps be hung strictly according to the recommendations on the label. The Lorelei trapping system can still be ordered from CRI. This trapping system is recommended, as it has been thoroughly researched, the dispenser releases pheromone at a constant rate, and threshold values can be ascribed to trap catches.

Growners wishing to control FCM with Cryptorganor Cryptex(FCM granulovirus) should apply the first treatment no later than the end of November or early December — aimed against the flight peak which occurs at this time in all production areas.

Recommendations for the use of Isomate (mating disruption)

Are that it should be hung during early October. It is imperative that these traps be hung strictly according to the recommendations on the label. The Lorelei trapping system can still be ordered from CRI. This trapping system is recommended, as it has been thoroughly researched, the dispenser releases pheromone at a constant rate, and threshold values can be ascribed to trap catches.

Growners wishing to control FCM with Cryptorganor Cryptex(FCM granulovirus) should apply the first treatment no later than the end of November or early December — aimed against the flight peak which occurs at this time in all production areas.
FRUIT AND FOLIAR DISEASES
G.C. SCHUTTE

Alternaria core rot

Alternaria core rot, also known as navel-end rot and black rot, occurs in all areas of southern Africa. The disease is most prevalent on those citrus cultivars such as navels and Clem- entines characterised by the presence of a secondary fruit called the fruit-navel, which varies in size and develops at the stylar end of the primary or main fruit. These fruitlets are extremely sensitive to environmental stress conditions during early stages of development and are therefore also prone to diseases such as navel-end rot and physiological disorders.

Alternaria core rot is linked to large fruit-navels or to the abnormal growth of the secondary fruit into primary-fruit locules which leads to the formation of points of entry through which fungi can penetrate to form infections which remain quiescent until favourable conditions stimulate further fungal growth.

The style and stigma of navel blossoms are milky white at first and then turn light brown in colour and abscise cleanly. This happens one week after petals have dropped and young fruit are ±8 mm in diameter. The two sets of stylar tissue present in the primary and secondary fruit locules can be injured during the blossom period if harsh weather conditions prevail for one or more days (hot days >25°C), and low relative humidity (<20%) followed by heavy dew during the evenings. This causes the outer or primary style to turn brown and dry out, while the inner or secondary style remains unaffected inside the outer style and continues to develop and swell in size to result in longitudinal cracks in the outer tissue. The longitudinal cracks enlarge as the orange increases in size. The inner ovary projects even more as the orange approaches maturity. This results in a large, irregular-shaped navel-end and creates an ideal site for Alternaria infections.

Score (50 ml/100 l water) and Folicur (80 ml/100 l water) are registered for control of the disease.

Black spot

Usually the first ascospore releases take place during November, but there can be deviations from the norm with early rain events during October (and sometimes even during September) that may lead to early spore releases. Therefore spray programmes should commence early in October and the first spray round must be completed before mid-October according to the selected fungicides’ label instructions. This is required to protect the fruit if early rain and subsequent ascospore release does occur. If strobilurins are selected for the November application, inclusion of mancozebin in the spray tank is required according to the registration. There are two known cases of apparent resistance in CBS towards the strobilurins that are under investigation. In both of these, mancozeb was not included in the spray mixture.