INTEGRATED PEST MANAGEMENT
MEALYBUG S.D. MOORE

Growers should be scouting for mealybug regularly, by inspecting underneath calyces and thereby determining percentage of fruit infested. Where mealybug is under good biocontrol, infestation should peak during December in the northern production areas and during January in the Cape production areas. If mealybug infestation does not decline during January and February, respectively, suppression with a chemical treatment is advisable on early maturing cultivars. Buprofezin (Applaud) is by far the most effective corrective option for mealybug control. It must be targeted against the younger stages of mealybug, i.e. eggs, crawlers and second instars. Where buprofezin cannot be used, methomyl and chlorpyrifos can be used if preharvest intervals allow.

The species of mealybug present should also be determined, as it appears that the biocontrol complexes of oleander mealybug and long-tailed mealybug, in particular, might not be as effective as those of citrus mealybug. Therefore, treatments can be applied more readily when either of these species is identified as the dominant species. The phytosanitary status of certain species must also be borne in mind.

Finally, a mealybug infestation can also attract a carob moth infestation. Therefore, if the fruit is to be exported to a market which is sensitive to carob moth, mealybug must effectively be controlled well before harvest.

FALSE CODLING MOTH S.D. MOORE

Effective false coding moth (FCM) control begins in November or even October with diligent orchard sanitation and the application of a registered control treatment. Follow up treatments should be applied as often as necessary, bearing in mind that there is zero tolerance for FCM by certain markets, making the decision a phytosanitary one rather than an economic one. It is also imperative to refrain from using broad-spectrum long-residual pesticides (most often used for thrips control) as early as possible in the season. Naturally occurring egg parasitoids can be extremely effective in reducing FCM levels and one should therefore conserve them.

One of the cornerstones of good FCM management is accurate monitoring of the pest. This should not only be conducted using pheromone traps, but far more importantly, by monitoring infestation in fallen fruit from at least five data trees per orchard on a weekly basis. The data collected will provide the most accurate indication of FCM levels in the orchard, whether additional control measures are required, and assist in postharvest decision-making regarding packhouse grading and export markets.

Granulovirus products (Cryptogram, Cryptex and Grahatham), Delegate and Broadband are the only pesticide sprays for FCM, which are permitted in all markets. The granuloviruses and Broadband can be used up until the day of harvesting. A virus application should be applied shortly after a peak in FCM activity, determined by the use of a pheromone trap. However, this may be difficult to determine late in the season when FCM levels are low and generations are overlapping.

Runner, Delegate and Coragen are all registered to be applied once or twice per season and all have withholding periods of 30 days or less for most markets. They are therefore suitable products for a final application against FCM before harvest, which ideally should not be applied later than 3-5 weeks before harvesting begins. Other chemical options are triflumuron (Alsystin), teflubenzuron (Nomolt), fenpropathrin (Meothrin) and Cypermethrin. However, there are some difficulties associated with these products such as prohibitive MRLs for certain markets, development of resistance by FCM, or secondary pest repercussions. They should therefore be used with discernment.

In addition to the insecticides, there are two mating disruption products – Isomate and Checkmate – and an attract and kill product, namely Last-Call FCM. However, all of these products are most effective when their use is initiated early in the season while FCM levels are still low. If this has not been done, initiation of their use late in the season is not recommended. Additionally, as the weather cools towards autumn, these pheromone-based products may become less effective due to a
reduction in release rate. In such a case it may be necessary to follow up these treatments with a spray for FCM.

Early maturing mandarins, such as Satsumas, which will be harvested during March, should be strongly considered for a registered spray treatment for FCM during February, i.e. approximately four weeks before harvest. An effective treatment at this time should reduce post-harvest risks associated with FCM.

BUD MITE T.G. GROUT

The period February to May is the optimal time for bud mite sprays and Mitigate (fenpyroximate) can be used during this period at 150 ml per 100 L water. The preharvest interval for Europe has changed to 60 days but for Canada and for citrus types other than mandarins going to South Korea the preharvest interval currently remains 150 days, or no applications after the end of October. Orchards with fruit going to markets that do not have an MRL can be sprayed immediately after removing all fruit in winter. In trials with Mitigate, this product was found to have similar efficacy to Acarol against bud mite so although a spray after harvest is not at the optimal time it will still have more impact against this pest than other unregistered options. Mitigate will also suppress citrus red mite when sprayed during autumn for bud mite and CRI research has shown that it is also effective against citrus grey mite.

FRUIT FLY A. MANRAKHAN

Fruit flies are pests of phytosanitary concern. There is a zero tolerance of fruit fly eggs and larvae in fruit consignments for export. The fruit fly pests affecting citrus are: *Ceratitis capitata* (Mediterranean fruit fly or Medfly), *Ceratitis rosa* (Natal fly) and *Bactrocera dorsalis* (Oriental fruit fly) previously known as *Bactrocera invadens* (B. i.) which is now present in the northern and north eastern parts of South Africa. *Ceratitis rosa* was recently split into two species: *Ceratitis rosa* and *Ceratitis quilicii*. Both species are present in South Africa.

Fruit fly management consists of two components: monitoring and control. Monitoring of Medfly and Natal fly should be carried out using Capilure and Questlure baited Sensus traps. Monitoring of Oriental fruit fly should be conducted using bucket type traps such as Chempac Bucket trap, McPhail type trap and Lynfield trap baited with Methyl Eugenol (ME). The Biolure fruit fly containing ammonium acetate, trimethylamine hydrochloride and putrescine is also recommended for monitoring all fruit fly pest species. Monitoring of Oriental fruit fly per Production Unit Code (PUC) is a requirement for phytosanitary registration of citrus, deciduous and subtropical fruit for export to the special markets (USA, Japan, South Korea, China and the European Union - EU). Each PUC should have at least one ME baited trap for monitoring of Oriental fruit fly. Monitoring of Oriental fruit fly should be carried out throughout the year. Trapping guidelines for surveillance of Oriental fruit fly in fruit production areas should be followed. Guidelines are available at http://www.daff.gov.za under Plant Health Division or at http://www.citrusres.com/market-access. Trap details and trap servicing should be recorded as per trapping guidelines. All trapping results should be supplied to Early Warning Systems ([e-mail: janhendrik@daff.gov.za](mailto:janhendrik@daff.gov.za)) at the end of each export season. Density of methyl eugenol baited traps should be between 2 and 5 traps per 100 ha in areas where Oriental fruit fly is considered present or where specimens of the pest fruit fly were detected. All fruit fly traps must be checked weekly and trapping records should be documented. Lures and insecticides inside traps must be replaced every 6-8 weeks. Traps are used to determine the presence/absence of a fruit fly pest and to indicate whether the control strategy is adequate. Detection of suspect Oriental fruit fly specimens in areas considered free of this pest should be reported immediately to the relevant surveillance co-ordinator (Citrus- Aruna Manrakhan: 013 759 8000) or to DAFF (Jan Hendrik Venter: 012 319 6384). Trap thresholds have currently been set for specific trapping systems. Trap thresholds should be adhered to. For Medfly, the threshold in a Capilure baited trap is 4 males per week. For Natal fly, the threshold in a Capilure baited trap is 2 males per week. When using Questlure in a Sensus trap, the threshold is one female fly per
trap per week for both Medfly and Natal fly. For the Oriental fruit fly, the threshold in a methyl eugenol baited trap set by DAFF is 3 flies per trap per week. If trap thresholds are exceeded, control actions must be increased.

Fruit fly control practices should be initiated at least two months before the earliest expected harvest date. However, for farms either with mixed fruit crops (such as mangoes or deciduous fruit) or near fruit types prone to high fruit fly infestation, fruit fly control practices should be implemented even earlier in line with the ripening and harvesting of the other fruit types. Fruit fly baiting and good orchard sanitation form the core of fruit fly control practices. For fruit fly baiting, the use of either one or a combination of the following registered methods is recommended: weekly bait sprays (either mixture of protein hydrolysate and malathion/trichlorfon or GF-120), M3 fruit fly bait station and Magnet MED. For the use of malathion in bait sprays, the pre-harvest interval is 7 days for citrus. The pre-harvest interval when using GF-120 is 1 day. When using bait stations such as M3 fruit fly bait station or Magnet MED, there is no pre-harvest interval. Precautions must be taken when using bait sprays on specific citrus cultivars with fruit at particular maturity stages. Ground-based spray application of GF-120 should be avoided on Nadorcott at the green and colour break stages due to possible phytotoxicity on fruit. Ground-based spray application of GF-120 is however safe to use when Nadorcott fruit is at the fully coloured ripe stage. In areas affected by the Oriental fruit fly, the Male Annihilation Technique (MAT) must be used. A number of male annihilation methods such as wooden fibre blocks impregnated with ME and malathion (e.g. ready to use Invader-b-Lok, Chempac ME liquid for combination with malathion 500 EC with the mixture impregnated into wooden blocks) as well as SPLAT technology containing ME and spinosad such as STATIC Spinosad ME have been registered for B. dorsalis control in South Africa. All fruit fly control products should be applied correctly. Instructions provided in labels of control products must be followed strictly. Fruit fly control must always be combined with proper management of insect pests such as FCM, which also damage mature fruit. All records of fruit fly control practices including MAT application need to be kept.

In all B. dorsalis quarantine areas, a removal permit is required for movement of fruit outside those areas. Applications for removal permits should be made through DAFF 30 days before fruit need to be moved out of B. dorsalis quarantine areas or 30 days before the expiry of the permit. The contacts at DAFF are Removal-Permits@daff.gov.za, Mashangoane Mabelebele (MashangoaneM@daff.gov.za) – 012-309 8735 and Gloria Phahlamohlaka (MadithameM@daff.gov.za) – 012 309 8791.

GRONDDRAAGDE SIEKTES

J. VAN NIEKERK & M.C. PRETORIUS

Grond en wortelmonsters behoort elke drie jaar geneem te word om sodoende die sitrusaalwurm en Phytophthora status in sitrusboorde te bepaal. Resultate sal dien as `n bestuurshulpmiddel wat gebruik kan word om grondpatogene effektief te beheer.

Phytophthora bruinvrot/wortelvrot

Weens die gevaar van fitotoksisiteit op gevoelige sitruskultivars tydens hoë temperature, wat gedurende Februarie / Maart kan voorkom, moet die gebruik van fosfonaatblaarbespuiting streng volgens die etiket geskied (GEEN SAGTE-SITRUS KULTIVARS – behoort weens hul gevoelige skille gedurende hierdie tyd van die jaar en met die produkte gespuit te word nie). Hoë dag temperature, tydelike vogstremming en warm bergwinde kan veroorsaak dat fosfonate swart stippeltjies soortgelyk aan koperskade op vrugte veroorsaak. Bome moet daarom nie gespuit word as toestande nie optimaal is nie. ’n Wortelvrot beheerprogram (blaarbespuiting) sal bruinvrot ook effektief kan beheer.

Bruinvrot ontwikkel slegs wanneer die klimaats- toestande gunstig is vir die patogeen (Phytophthora) om te infekteer en te ontwikkel. **Indien dit dus n droë najaar is en geen of slegs ligte reënbuie voorkom, is voorkomende fosfonaatblaarbespuitings nie nodig nie.** Indien dit egter n nat na-jaar is kan bome met kontakmiddels soos koper of mancozeb (let op beperkings...
na markte) soos fosfonate (let op etiket aanbevelings vir weer-
houdings tydperk en waarskuwings), gespuit word om bruinvrot te beheer. Bo en behalwe
droogte en hitte kan h oomaat vogtige
toestande (baie reën) ook bome onder tydelike
verwelkte toestande plaas wat h gevaar inhou
vir blaargespuitings. Bome moet dus nie tydens
of kort na sulke toestande gespuit word nie.
Laastens beïnvloed drag ook 'n boom se gevoe-
ligheid vir droogtespanning. Hoe hoër die drag,
hoe gevoeliger is die boom vir uitdroging en
hoe groter is die risiko vir fitotoksisisiteit.

Sitrusaalwurm

Wortelmonster kan enige tyd van die jaar
getrek word om die status van die sitrusaal-
wurmpopulasies in boorde te bepaal. Wyfie-
tellings word gebruik om te bepaal of die
toediening van 'n aalwurmdoder geregyvierig is.
Die drempelwaarde voordat 'n aalwurmdoder
oorweeg word is 1000 wyfies/10 g wortels. Daar
word aanbeveel dat aalwurmdodertoedienings
in aanvang neem tydens die begin van die reën-
seisoen. Dit sou daarom die regte tyd wees vir
produsente in die Wes-Kaap om hulle aalwurm-
monsters in Maart te trek sodat hulle weet
watter boorde om te behandel wanneer winter-
reën begin. Residu-weerhoudingstryperke
moet in ag geneem word. Dit is belangrik om
'n aalwurmbekraamprogram te volg aangesien
h enkele aalwurmdodertoediening nie effekti-
genoe is nie en het geen noemenswaardige
onderdrukking van die aalwurmpopulasies op
die langduur nie. Meermalige toedienings twee
maande uit mekaar versekere dat die larfies wat
uitbroei gedood word voordat hulle volwasse
wyfies kan raak wat weer eijing kan lê.

Tydens die toediening van aalwurmdoders is dit
uiters belangrik dat ten minste 40 mm besproeiing
toedien word nadat produktes toegedien is om te versekere dat die middels in die gronddiepte
ingewas word. Die meeste aalwurmdoders
loop baie stadig. Die effektiviteit van die
doders word dus belemmer indien hulle nie behoorlik deur die wortelsone versprei word
nie. Geen aalwurmdoder behoort deur drupbesproeingsstelsels toegedien te word nie. Indien
toedienings in boorde met drupbehoort die middels as h
bandplasing (half meter aan beide kante van die drupperlyn) oor die drupperlyn gedoen te word.
Dit kan wel deur micro-besproeingsstelsels
toegedien word.

Indien beplan word om h boorde te verwyder
behoort h aalwurmmonster geneem te word
voordat die boorde verwyder word sodat bepaal
kan word of sitrusaalwurms teenwoordig is. Dit
dien as h bestuursriglyn om 'n geskikte onder-
stam te kies in gevalle waar h herplantsstrategie
uitgewerk moet word.

HORTICULTURE Fruit production & quality
O.P.J. STANDER, P.J.R. CRONJE

Internal quality: If properly timed, regulated
deficit irrigation can result in increased total
soluble solids (TSS) and an increase or no
response in titratable acidity. Deficit irrigation
retards the breakdown of acid and can influence
the solids:acid ratio at harvest for better or worse,
depending on cultivar characteristics. It is mainly
aimed at early cultivars like Satsuma, but other
early maturing cultivars with low internal quality
could benefit. Less water is applied, and at longer
intervals. Therefore, irrigation is continued but at
a reduced level. Trees should be irrigated lightly
two weeks prior to harvest. No water stress
should be imposed during the initial growth
phase of the fruit, i.e., during and after flowering,
but only during the final maturation phase, i.e.,
the last two months prior to harvest (January for
Satsuma). Any water stress earlier than the end of
January could lead to reduced fruit size and loss
of rind integrity. In high rainfall areas, regulated
deficit irrigation may not be successful. The defi-
cit should be imposed slowly, so that the trees
can adjust without symptoms of drought. Severe
water stress can have adverse effects on tree
health, fruit size and fruit quality. High nitrogen
is antagonistic to the effect of deficit irrigation.
Management of this technique is much easier
when trees are planted on ridges and when the
right scheduling equipment is used. Additionally,
regulated deficit irrigation imposed the last two
months prior to harvest also enhances the rate of
colour development. Selective harvest of outside
fruit and delaying harvest of inside fruit will result
in a higher proportion of fruit with higher TSS
and better colour.

CONTINUED ON PAGE 46
Maturity indexing on early cultivars like Satsuma should commence. Maturity indexing is done to predict the rate of change in fruit maturity in order to harvest fruit at optimal maturity, to maintain acceptable commercial shelf life. The aim is to define changes or rate of change in acids and sugars and to build up a data base over a number of years for comparison. Random sampling of fruit every week from each of ten representative trees should start 4 to 6 weeks before the expected harvest date. Titratable acidity is determined by titration with sodium hydroxide, sugar content (Brix) is determined using a refractometer, the sugar:acid ratio calculated and fruit colour should be read from a colour chart. All the parameters mentioned above should be plotted on a graph over time. Once plotted, trends will become apparent, harvest dates can be estimated and problem areas in internal and external quality parameters can be identified and manipulated.

Fruit growth and size: Fruit growth during this time is important to achieve optimum size at harvest. Fruit growth is in the peak of phase II, in which the majority of fruit size increase takes place for most cultivars (Figs. 1 and 2). Ensure optimal irrigation and try to avoid stress conditions, as this might have an adverse effect on fruit size. Fruit thinning plays a critical role in fruit size (see Cutting Edge no. 32: Fruit size improvement). Correct pruning practices are the most effective way to manipulate the number of fruit per canopy volume and the eventual fruit size. For more information, refer to SA Fruit Journal Oct/Nov 2015: The reproductive phenology of Citrus III: Morphogenesis from flower to fruit.

Regrowth control should be done, especially after heavy pruning earlier in the season. A lot of regrowth adversely affects fruit size and is antagonistic to fruit colour development, especially for early maturing cultivars.

Oleocellosis: Late summer vegetative growth of bearing trees should be kept to a minimum as excessive vegetative vigour during this period is associated with high incidence of oleo at harvest.

Rind colour development: Late nitrogen application and the use of heavy summer oil sprays should be avoided as these treatments are antagonistic to rind colour development.

Blaar- en grondontledings

By sitrus word blaar- en grondmonster gedurende Februarie en Mei geneem maar die periode kan tot Julie verleng word. Daar moet net in gedagte gehou word dat wanneer monsters in Julie geneem word, is die tyd beperk om resultate betyds terug te kry om bemestinaanbevelings te maak vir bemesting wat in Julie/Augustus begin word. Geen ontledings, hoe gesofistikeerd ookal, kan die kwaliteit van die monster verbeter nie. Bestee dus tyd,
energie en aandag aan die monsterneming-sproses. Op grond van die resultate van dié monsters word baie geld aan kunsmis bestee, terwyl die oes ook benadeel kan word. Monster elke jaar dieselfde groep bome (Indeksbome) en hou by dieselfde prosedure en tyd. Soos by enige monster moet dit die eenheid wat gemon-
ster word, in alle opsigte verteenwoordig.

Leaf analyses Leaf analyses are an indicator of the nutritional status of the trees. During the research into this method a relationship was established between the concentration of the nutrient elements in the leaves and production. This relationship was developed for almost every nutrient element. For some like chloride and sodium only the maximum tolerable concentration was determined.

Let ook op die volgende spesifieke vereistes.
- Verdeel die boorde in monster eenhede, verkieslik nie groter as 5 ha nie.
- Kies twee of vier INDEKS-RYE wat die monster-
eneheid in alle opsigte verteenwoordig en
merk die rye.
- Gebruik elke jaar dieselfde indeksrye om
blaar- en grondmonsters te neem.
- Pluk sowat 50 tot 75 blare per monster deur aan die linkers- en regterkant (son- en skadukant) tussen heup- en kophoogte, blare te gepluk.
- Pluk blare van agter h vrug, wat op dieselfde takkie as die vrug, en in die lente gevorm is (Figuur 3).
- Pluk die blaarmonsters gedurende Februarie tot Mei.
- Plaas die blare in h skoon plastiek sakkie, druk die lug uit en knoop toe.
- Merk die monsters deur h etiket op die sakkie te plak of aan die sakkie te bind.

Ensure that the correct leaf is picked from the trees in the index rows or blocks. The correct leaf is one that was formed during the previous spring and situated behind a fruit on the same twig as the fruit. Collect 50 to 100 leaves per sample. Take the soil sample at the same index trees. Collect 15 to 20 subsamples, mix and submit 500 g of the composite samples for analyses.

If the soil was sampled, prepared and fertilized properly before planting, it is not necessary to take leaf samples from non-bearing trees.

However, it is never too early to monitor the nutritional status.

Grondmonsters Grondontledings verskaf inligting wat help om te besluit watter stappe geneem kan word om te tekorte, wanbalanse en oormate in die voedingstatus van die bome reg te stel. Met 'n grondontleding word gepoog om binne sekondes of minute 'n massa van die voedingstowwe uit die grond te ekstraheer, wat die bome in 8 - 10 maande sal opneem. Elke metode wat gebruik word, het dus net waarde indien dit gekalibreer is en presies so uitgevoer word, soos wat dit in die kalibrasie gebruik is.

**Neem van grondmonsters vir bemestingsad-
vies** Die grondmonsters word in dieselfde indeks-
rye as die blaarmonsters soos volg geneem.

Monsterneming by mikrospuite
- Neem h submonster vanaf die oppervlak
(verwyder slegs die blare, maar geen grond nie) tot 30 cm diep onder die blaarkap. Gebruik h graaf of monsterboor.
- Neem sowat 15 tot 20 submonsters by die bome in die indeksrye. Plaas dit in h plastiekemmer, meng deeglik en neem ±400 g en verpak vir versending na die laboratorium.
- Merk die monster met die boordnaam (u verwysing) of boordkode plus u besonderhede.

Soil sampling at drippers (Figure 4).
- Remove the top 5 cm of soil plus debris.
- Take the sub-sample from 5 to 30 cm deep.
• Take the sample between the dripper and the perimeter of the wetted zone. If the wetted zones of two adjacent drippers overlap, take the sub-sample between the two drippers.
• Collect 15 to 20 sub-samples at the index trees. Put the sub-samples in a plastic bucket, mix properly and retain ± 500 g for sending to the laboratory.
• Mark the samples with your name and that of the orchard plus all relevant information on a label and stick or tie it to the outside of the container.

Dit word sterk aanbeveel dat ‘n submonster, 30 tot 60 cm diep, elke twee tot drie jaar geneem word om die grond-pH en opbouing van soute in die wortelsone te monitor.

POST HARVEST PATHOLOGY – WASTE PREVENTION CHECKLIST

K.H. LESAR & W. DU PLOOY

Sanitation: NB: For reducing fungal spore load, as well as keeping FCM and fruit fly under control – remove all fallen fruit and decayed fruit from the orchard. Bury or macerate fallen fruit and allow to dry in the sun **away from the orchards**. Remove dead wood from all citrus trees to reduce the spore load of the latent citrus pathogens.

Good fruit fly control: Use traps and bait regularly.

FCM: Apply pre-harvest treatments according to trap counts and fruit drop data.

Skirt trees for brown rot control: Ensure that trees are adequately skirted, preventing low hanging fruit, especially in heavily laden trees, and thereby reducing the risk of Phytophthora brown rot infection during the rainfall season.

Do not pack any fallen fruit that could be infected, or any fruit touching the ground. These fruit should be removed from the orchard a day or two before harvest.

Swaar reënval – Phytophthora bruinvrot waarskuwing!!!

Phytophthora bruinvrot word versprei wanneer *Phytophthora nicotianae* of *P. citrophthora* spore tydens reën vanaf besmette grond op vrugte spat. Infeksie vind plaas en die vrug vrot na 4-6 dae. Dit gebeur dus dat geïnfekteerde vrugte gepluk en gepak kan word en tydens versoending bruinvrot kan ontwikkel. H Enkele vrot vrug kan die hele karton vrugte besmet.

Die swam penetreer die skil binne drie ure, dus is dit belangrik dat bruinvrot voorkomend in die boord, voor pluk, behandel word.

PREVENT INJURIES: Test for injuries. “Indigo-Carmine” should be used for this purpose. Test both in the orchard and the packhouse.

NB: Ensure that proper picking practices are adopted. There are far too many injuries every season, resulting in unnecessary high waste levels. LET WEL: Sorg dat gepaste plukpraktyke toegepas word. Plukbeserings veroorsaak elke seisoen onnodig hoë vlakke van bederf. | Apply packhouse fungicides with care and proper management: Check the mixing / application rates.

PACKHOUSE SANITATION:

• Never allow any fruit, and more importantly any fungicide-treated fruit, to lie around in the packhouse and develop spores.
• Constantly monitor concentrations of sanitisers in dump tanks, descaler water, rinses, etc.
• Spray the packhouse with sanitisers regularly and immediately after finding a single mouldy fruit.
• Spray trailers/picking bins with a suitable sanitiser before they leave for the orchard.
• Transport cartons to the ports as soon as possible and prevent packed fruit standing on the packhouse floor where it is hot. Green mould develops faster at 10°C than at 4.5°C.
• Store retention samples for each consignment and check regularly for waste and other developing factors.

THE CONTROL OF POST-HARVEST DISEASES ON EXPORT CITRUS USING THE POST-HARVEST FUNGICIDE THIABENDAZOLE

There seems to be a general reduction in the use of thiabendazole within the SA citrus industry. This is particularly alarming since latent pathogen infections have been observed in abundance during recent citrus production seasons.

Why use thiabendazole (TBZ)? TBZ was the first fungicide registered (1960s) for the control of the Penicillium moulds and the latent pathogens, Diplodia stem-end rot, Phomopsis stem-end rot and Anthracnose on citrus fruit.
TBZ and benomyl belong to the benzimidazole group of fungicides. The benzimidazoles are distinguished from other traditional fungicides in that they control diseases both by contact and systemic action. Due to the extensive pre-harvest application of benomyl for the control of citrus black spot and the post-harvest application of TBZ for control of Penicillium, populations of Penicillium that were resistant to the benzimidazoles developed rapidly. There is therefore an unfortunate perception in the industry that TBZ is of no value in controlling important post-harvest pathogens.

However, TBZ is still effective in controlling the latent pathogens on citrus: Diplodia stem-end rot, Phomopsis stem-end rot and Anthracnose. All export citrus should therefore be treated with TBZ. Application of TBZ in the wax to fruit also reduces the risk of some physiological rind conditions developing on sensitive cultivars during storage and export, e.g. chilling injury, pitting etc.

GUIDELINES FOR REDUCING THE RISK OF CHILLING INJURY ON GRAPEFRUIT EXPORTED UNDER EXTENDED COLD STERILISATION CONDITIONS: Citrus in general is known to be sensitive to cold damage (chilling injury) during shipping and storage, but certain cultivars, with light or yellowish pigmentation (some soft citrus cultivars, lemons and grapefruit varieties), are particularly prone to chilling injury, especially when exposed to “cold sterilisation” temperatures. It is especially the yellow pigmented citrus cultivars viz. lemons, Satsumas, Marsh grapefruit, and even the yellow areas of Star Ruby and Rose grapefruit which are the most sensitive, as they do not contain sufficient levels of carotenoids which act as anti-oxidants that protect the fruit against chilling injury. The extended cold sterilisation treatment, as recently adopted by China (24d at -0.6°C), is particularly problematic. It is generally accepted that it is not feasible to export lemons under these conditions. Though grapefruit is also highly sensitive to chilling injury, the application of TBZ can reduce the risk of chilling injury.

Picking window The South African grapefruit season, in the traditional production areas, extends from the middle of March to the end of June. The picking window for grapefruit is often manipulated in an attempt to access markets early or to extend the season. However, harvesting grapefruit too early in the season, when the fruit rind is still “immature” and also at or beyond the end of the season when the fruit is well coloured and “very mature”, is when grapefruit is most sensitive to cold injury. It is a major risk to export such sensitive fruit to markets where cold sterilisation is a requirement.

Thorough maturity indexing is essential to determine the ideal harvesting window. Commencing 5 weeks before anticipated harvest, pick samples of grapefruit (20-25 fruit). Mark the representative trees (data trees from different rootstocks, selections, tree ages or microclimates). Evaluate and record average fruit colour and full internal quality assessments. Repeat every week until optimal harvest date, ensuring that the samples are drawn similarly for comparison. Plot the results on a graph to determine whether the season is early or late compared to the previous year, thereby determining the optimal picking window for the specific cultivar.

Commencement of export packing of grapefruit to “cold steri” markets should start 14 days later, as the rinds will still be too cold sensitive at the beginning of the normal optimal picking window. Harvesting of grapefruit for “cold-steri” markets should also not be extended beyond the end of the optimal picking window.

Post-harvest wilt conditioning Conditioning (wilting) trials where Marsh grapefruit (exported to Japan) was “conditioned” for 2, 4 and 6 days at 16°C and 20°C prior to cold treatment, showed a dramatic reduction in the incidence of chilling injury relative to the non-conditioned control fruit. Unfortunately extending the time between packing and introduction into the cold chain can also increase the incidence of post-harvest rind pitting and decay in sensitive fruit. Nonetheless, wilting at ambient for 7 days is part of the standard handling procedure for grapefruit exported to Japan and should be implemented by anybody wishing to risk exporting grapefruit under an extended cold treatment regime.

The role of TBZ It is known that inclusion of thiabendazole (TBZ) in citrus wax applied
to grapefruit can significantly reduce the incidence of chilling injury. Inclusion of TBZ is also a good standard packhouse procedure and should be used if anybody wishes to risk exporting grapefruit under these extended cold sterilisation conditions.

Pre-cooling and storage A critical factor affecting the extent of chilling injury of grapefruit, is the duration of exposure to temperatures below 4.5°C. This exposure period is cumulative and can occur during pre-cooling (the period prior to loading during which the temperature of the fruit is reduced to the cold sterilisation level), the cold sterilisation treatment itself and post-shipping storage. Pre-cooling for 3d is a compulsory component of the disinfection treatment, but any other pre-loading storage at temperatures below 4.5°C should be avoided. Storage of grapefruit after shipping should be at an “intermediate storage temperature” of 7 to 8°C and should be kept to the minimum necessary duration.

The role of waxes The main purpose of a wax emulsion is to:
- Protect fruit against moisture loss, which results in longer shelf life and less weight loss of the fruit.
- To provide shine to the fruit at the point of sale. It is important to note that this shine needs to be sustained throughout the chain of distribution (some waxes break down more rapidly than others).
- Provide a barrier of protection against chilling injury and fungi.

The type of wax that you choose and the way in which you apply the wax will have a significant influence on the above points.

Choosing the right wax: The “lighter” waxes (e.g. lower solids or carnauba based waxes) offer less resistance to gas transfer (respiration) than “heavier” waxes (e.g. shellac or high solids polyethylene based waxes). Thus light wax emulsions will protect fruit with sensitive rinds far better than a heavier wax emulsion and will also allow for better colour development. On the other hand, lighter waxes break down more quickly, and are therefore not suitable for long storage programs, especially cold sterilisation programs. Research has indicated that “heavy waxes” that slow down breathing (respiration) and retain a high level of CO₂ (10%+) on the surface of the fruit, reduce the incidence of CI. Unfortunately, the use of heavy waxes may increase the incidence of post-harvest rind pitting on sensitive fruit. Nonetheless, the high risk of chilling injury on grapefruit under conditions of extended sterilisation, make it appropriate to consider preferentially using such waxes when exporting to markets that require such extended cold treatment.

Wax application Uneven waxing, under-waxing and over-waxing all have a deleterious effect on fruit quality. The wax barrier need not be thick, and in fact a very thin barrier provides enough of an integral film to prevent most of the moisture loss without interfering with the respiration process. NB: Adhere to the wax manufacturer’s recommended application rate – **adhere to the product label instructions**.

Please note
- Fruit should be dry before waxing. Where possible the packhouse should use a hot water bath for fungicide application as this helps the drying of fruit before waxing.
- Fruit must move evenly through the waxing unit and flow of fruit entering the packing line must be consistent.
- When fruit leaves the waxing unit, all parts of the fruit needs to be covered with a film of wax. Examine fruit after the waxing unit regularly.
- Brushes in the wax applicator must be in good condition and should rotate at a speed of about 90 rpm. The last brush in the wax applicator should always be wet, so as not to remove wax from the fruit.

Over application
- Inhibits the breathing (respiration) of the fruit.
- The movement of oxygen and CO₂ on the surface of the fruit is inhibited resulting in poor colour development and off-flavours caused by the process of an aerobic fermentation.
- Inhibits colour break.
- Encourages rind disorders on sensitive fruit.
- Unnecessary expense!!

Under application
- Excessive weight loss and shrinkage of fruit.
- Poor shelf life / storage.
- Susceptibility to chilling injury.