INTEGRATED PEST MANAGEMENT

False codling moth S.D. MOORE

All fruit remaining on trees after harvest must be removed and destroyed. This is because FCM activity does not cease during winter and any remaining fruit can therefore serve to facilitate this activity. In addition, this winter fruit creates a reservoir of inoculum of FCM for the following spring. Conversely, removal of all fruit after harvest can dramatically reduce FCM levels in the following season. Fruit fly numbers can also build up on unharvested fruit.

Packhouses are strongly urged to implement the most painstakingly thorough inspection systems for FCM on delivery of fruit at the packhouse, in line with the recommendations presented at CRI’s postharvest workshops. Grading of fruit on the packing line should similarly be as stringently applied as possible. Packhouses should not hesitate to slow down the line speed to enable more careful scrutiny of fruit. Additionally, a designated inspection table should preferably be installed just before final grading and sizing of fruit. These should be equipped with excellent lighting. Staff appointed to conduct such inspections and grading should be properly trained and incentivised to do the most reliable and accurate job possible.

Red scale T.G. GROUT

Those growers who have experienced red scale problems during the past season should consider applying narrow distillation range horticultural mineral oils as these comprise the most IPM-compatible treatment option for red scale. The optimal period to apply this treatment is from budswell to budburst (mid-July to mid-August). The concentration to be used is dependent on the grade of the oil to be applied (generally 1.0 – 1.25% medium grade oil). When spraying oil, care must be taken to apply the oil as a full cover, film wet spray. Trees to be sprayed must also not be under any stress. Other treatments for red scale would normally be applied in August, September or after petal fall and will be discussed in later editions of Extension Briefs.

Ant control T.G. GROUT

Ants are usually indirect pests on citrus and interfere with the behaviour of natural enemies, sometimes protecting and even transporting pest species. The winter months are a good time to control ants before honey-dew-producing pests such as aphids increase on the spring growth flush. Trees should also be skirt-pruned to prevent branches from touching the ground later in the season when bearing fruit.

NA-OES PRAKTYKE P.J.R. CRONJÉ

Vir die voorkoming van na-oes fisiologiese afwykings is die korrekte produksiepraktyke, soos bemesting en besproeiing, asook snoei, uiterst belangrik. Daar is egter gedurende die oes en pak-proses kritiese faktore waarop gelet moet word wat die voorkoms van skildefekte, asook algemene vrugkwaliteit kan beïnvloed. Bepaal die optimum plukvenster vir elke kultivar per boord deur hê manedag voor die beplande oesdatum met ryphereisindeksering (interne kwaliteit en skil-kleur) te begin. Daar moet gepoog word om die temperatuurlading op die vrug te beperk vanaf die plukproses tot in die pakhuis, deur die vrugte se veldhitte so gou as moontlik te verwyder (bv. deur vrugte gouer te “drench”). Die paklyn het ‘n invloed op skilkondisie, asook die voorkoms van skildefekte, en dit is belangrik dat detail aandag aan alle bewegende dele, bv. rollers en borsels, asook waks-tipe en aanwending geskenk word.

Ontgroening is ‘n belangrike aspek van die sitrus na-oes hantering en moet optimaal bestuur word. Dis belangrik om te besef dat daar ‘n interaksie tussen kultivar, vrugrypheid en die effektiviteit van ontgroening bestaan. As vrugte te vroeg (onvoldoende kleur-ontwikkeling aan boom) in die ontgroeningskamer geplaas word, sal die verlangde kleur nie ontwikkel nie en vrugte neig om hê geler of bleker voorkoms te kry. Gedurende ontgroening is daar egter aspekte wat streng beheer moet word, nl. etileen konsentrasie (1-3 ppm), temperatuur en relatiewe humiditeit (95%+).

Optimum ontgroeningstemperatuur

<table>
<thead>
<tr>
<th>Fruit Type</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satsuma mandaryne</td>
<td>18 to 21°C</td>
</tr>
<tr>
<td>Clementine en Nova mandaryne</td>
<td>19 to 22°C</td>
</tr>
<tr>
<td>Nawel lemoene</td>
<td>21 to 23°C</td>
</tr>
<tr>
<td>Ander lemoene</td>
<td>23 to 24°C</td>
</tr>
<tr>
<td>Pomelos en suurlemoene</td>
<td>24 to 25°C</td>
</tr>
</tbody>
</table>

Ontgroen altyd meer sensitiewe vrugte teen die laagste temperatuur. Die etileenbehandeling is die effektiefste as vrugte van dieselfde kleur gelyktyd behandel word. Die tydperk van die behandeling moet ook so kort as moontlik wees.
Hou die CO$_2$ vlakke onder 0.3% (3000 dpm) deur die ventilasie sodanig te stel; hoë CO$_2$ vlakke verlangsaa die ontgroeningsproses deur as kompetende inhibeerder teen etileen. Die tempertuur verkoel is, mag die tempertuur nie weer styg nie. Vir meer informasie raadpleeg die “Common defects associated with degreening of citrus” deur Krajewski en Pittaway, wat beskryf hoe dit word van CRI in Nelspruit (kontak Bella 013 759 8000).

Die koueketting se invloed op die vrugkwaliteit is van kardinale belang en sal nie net die voorkoms van skildefekte beïnvloed nie, maar ook algemene kwaliteitsaspekte soos vrugfermheid en belang en sal nie net die voorkoms van skildefekte beïnvloed nie, maar ook algemene kwaliteitsaspekte soos vrugfermheid en vrugfermheid.

Common Defects Associated with Degreening of Citrus by Andy Krajewski & Tim Pittaway, and Postharvest Rind Disorders of Citrus Fruit by Paul J. R. Cronje are a must for any grower. Both are available from CRI. Contact Bella Thulare 013 759 8000, bella@cri.co.za.

Pickers training and monitoring: Picking bags should always be carried on the side of the waist to avoid crushing of fruit between the body and the ladders, bins or trees. Picking bags should at all times be free of leaves, shoots or sand and kept dry throughout. To avoid lesions on fruit, finger nails of pickers should be short and scissors and ladders handled correctly i.e. no long stems and limited contact between ladders and fruit. Picking of low-hanging fruit as well as collecting of dropped fruit should be avoided. At each bin, two sorters should be stationed wearing gloves and fruit quality of each picker monitored via the sorters, by an appointed team leader.

Pruning: Pruning for early and mid-season cultivars should be done as soon as possible after harvest. All of the following should be removed during pruning: old, broken and dead shoots/twigs; weak and entangled shoots crossing each other or hanging downwards; any rootstock regrowth, water shoots and excessive regrowth from main frame shoots on the inside of the tree. Light levels of above 30% of full sunlight are necessary for optimal photosynthesis - at least one “window” cut should be made to allow adequate light distribution and improve bearing wood. Increase in photosynthesis and light distribution will lead to increased fruit size and internal fruit quality (Brix°), better fruit colour development, increase in rind integrity as well as a more uniform fruit distribution across the tree. Pruning can also be used as a thinning technique: prune more heavily after a light crop if a heavy crop is expected and when the orchard has a history of alternate bearing. A follow-up prune of regrowth in the summer is of critical importance. Pruning tools should always be sanitised with 10% Jik when moving from one orchard to another. Pruning also ensures better spray penetration during pest and disease control and much more cost-effective spraying.

Flower induction: Citrus trees require a rest period of about 6 weeks to ensure that adequate flower induction takes place. The two mechanisms involved in floral induction in citrus involve (i) low temperature, or (ii) controlled-drought stress, both to ensure no root activity. In the absence of low-temperature rest, citrus trees should be exposed to controlled-drought stress for a 4 to 6 week period during June and July if possible.

Bemesting / Fertilisation

Blaarontleding / Leaf analysis The very last opportunity to get leaf analysis done is in June and July. Leaf analysis is still the best diagnostic method to measure the nutritional status of the trees.

Grondontledings / Soil Analyses Soil analyses should be done annually and preferably during the same time as leaf analyses. A good practice is to take soil samples from the same spot every year to ensure that an accurate historic dataset is developed for the soils. Sampling areas can be marked with GPS coordinates.

Other analyses If manure or compost is used as a fertiliser source, then the material should be analysed to determine the nutrient value of the organic material. The amount of organic material applied is determined by the amount of nutrients that is available in the compost or manure. Normally the nutrient content of organic material is much lower than inorganic fertilisers and therefore high quantities of organic material are applied. Be careful that excessive nutrients or toxic amounts of other elements are not applied.

Bemesting / Fertilisation

The fertilisation programme is compiled from results of both soil and leaf analyses. Potential yield is used as an indicator for the amount of fertiliser to be applied. Use historic yield data to determine a realistic target yield. The fertilisation programme for the 2018 crop starts in July or August 2017, depending on the production area, and is usually completed by November (where micro-sprinklers are used) or January (where drippers are used). Due to the properties of the specific chemical, the properties of the soil and the physiological requirements of the trees, certain basic rules should be adhered to when applying fertilisers to citrus.
Blaarbespuitings word gebruik om tekorte reg te stel of om die bome se fisiologie te manipuleer. Vir manipulasie is dit hoofsaaklik lae biuret ureum of kaliumnitraat wat gebruik word. Beide bespuitings moet 6 tot 8 weke voor die 50% blom-stadium toegediens word. Dit is meestal Julie of vroeg Augustus.

<table>
<thead>
<tr>
<th>Element</th>
<th>Mikrospuite/Micro-sprinklers</th>
<th>Drippers/Drippers</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Dien die meeste N gedurende Julie tot September toe. Die aantal toedienings word bepaal deur die totale massa kunsmis wat toegedien moet word en die klei-inhoud van die grond. Die beginsel vir sproeibemesting of hand- en meganiese toediening bly selfseld.</td>
<td>Die beginsel is soos dié vir mikrospuite maar die massa word verdeel in h groot aantal toedienings wat tot Desember strek. Die meeste N moet egter nog steeds in Julie tot September toegediens word, en die toedienings moet nie veel langer as Januarie aanhou nie.</td>
</tr>
<tr>
<td>Organiese materiaal</td>
<td>Dien al die organiese materiaal sooos kompos, kraal- of hoendermis gedurende Julie tot Augustus toe. Genoeg tyd moet gelaat word sodat 70% van die stikstof teen Oktober vrygestel is.</td>
<td>Die huidige metode is om die totale massa organiese materiaal te verdeel en gelyke massas bo-op elke drupper te plaas. Dit moet gedurende Julie/Augustus gedoen word.</td>
</tr>
<tr>
<td>P</td>
<td>Use only single or double supers and apply it in a narrow strip of about 5 cm wide, below the drip line of the trees.</td>
<td>Use a water soluble source like mono ammonium phosphate (MAP) or phosphoric acid and apply it over an extended period (4 to 5 months) at low concentrations.</td>
</tr>
<tr>
<td>K</td>
<td>Wanneer sproeibemesting gebruik word, kan dit teen 100 g K per boom per toediening oor die hele lengte van die siklus toegediend word. Wanneer meganies of met die hand uitgestrooi word, word een (lee- tot kleigronde) tot drie (sandgronde) toedienings gedurende die lente/vroë somer gemaak.</td>
<td>Dien die aanbevole massa kaliumnitraat, -sulaat of –chloried oor h periode van 3 tot 6 maande gedurende Julie tot Desember toe.</td>
</tr>
<tr>
<td>Ca</td>
<td>The most critical time for a deficiency would be August to October. Therefore when gypsum is required, apply it during August or September.</td>
<td>Calcium nitrate is the only suitable source and must be applied during August or even July to September/October. The application can however be extended to December. Remember to take into account the nitrate component of the calcium nitrate when calculating N fertilisation.</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Dolomitiëse kalk, magnesium-hidroksied of –oksied kan in die lente, vroë somer of herfs toegediend word.</td>
<td>Magnesiumnitraat of –sulaat word ook oor h periode van 3 tot 6 maande toegediend. Die nitraat word gewoonlik vroeg en die sulaat na Oktober toegediend.</td>
</tr>
<tr>
<td>Sulphur</td>
<td>Sulphur deficiency has the most devastating effect on fruit set. Where a deficiency is present, apply the sulphate during July to August. Maintenance applications are done during spring or early summer.</td>
<td>Magnesium, potassium or ammonium sulphate are the sources and the application is timed to fit the requirement of these four elements.</td>
</tr>
</tbody>
</table>

Blaarbespuitings word gebruik om tekorte reg te stel of om die bome se fisiologie te manipuleer. Vir manipulasie is dit hoofsaaklik lae biuret ureum of kaliumnitraat wat gebruik word. Beide bespuitings moet 6 tot 8 weke voor die 50% blom-stadium toegediens word. Dit is meestal Julie of vroeg Augustus.

<table>
<thead>
<tr>
<th>Element</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>July or early August October to February</td>
</tr>
<tr>
<td>P</td>
<td>6 weke na bloemblaaaval. 6, 4 en 2 weke voor oes.</td>
</tr>
<tr>
<td>K</td>
<td>July or early August August/September for the best results and up to February for maintenance. After fruit drop to December</td>
</tr>
<tr>
<td>Mg, Zn, Mn, B en Mo</td>
<td>Julie en weer in Oktober. Oktober tot Desember</td>
</tr>
<tr>
<td>Cu</td>
<td>May to July, before flowering.</td>
</tr>
</tbody>
</table>
While most packhouses now enter their peak time, important and basic practices such as sanitation and fungicide application must not be neglected.

Packhouse sanitation
The main aims of this practice are
1. to remove any infected fruit from the packhouse environment and
2. to sanitise surfaces with appropriate treatments.

These actions will reduce the inoculum (spore) levels, and the risk for future infections and fungicide resistance development.

Surfaces that should be considered in sanitation
• Packline surface – treat daily with QAC, but rinse with clean water afterwards; alternatively use chlorine or SOPP.
• Fruit surface – one of the first steps, when entering the packhouse, should be a fruit disinfectant treatment. Chlorine is the most popular active for this step. Remember to manage the Cl concentration, pH and ORP.
• Floors and walls – wash weekly with quaternary ammonium compound (QAC). These include the packhouse, degreening rooms and cold rooms.
• Orchard bins and picking bags – wash regularly.

Sources of inoculum (spores)
• Waste fruit – have a protocol in place to remove these fruit a.s.a.p. and to keep it in sealed containers.
• Juice fruit – these fruit are often treated with fungicides, sits in the packhouse area for some time till shipping to the juicing plant, and therefore holds a resistance risk.
• Retention samples – fruit was also treated with fungicides and holds a similar resistance risk as above.
• Post degreening fruit – degreening conditions are hugely favourable for disease development and unfortunately, some sporulating fruit are often tipped into the packhouse system.

Recommendations that can reduce the risk for infection and/or resistance development
• Treat all harvested fruit a.s.a.p., but within 12 - 18 hours as most fungicides cannot control infections older than a day. This is now more important than ever with the loss of guazatine.
• Don’t let fruit stand from Friday afternoon to Monday morning without any fungicide protection.
• Degreen fruit for the absolute minimum period of time.
• Do not exceed the volume limit of your packline: exceeding the limit will result in accelerated agitation and movement of the fruit, which, in turn, will reduce the efficacy of sanitation and fungicide treatment.

Fruit will move too quickly through the various control points:
• The chlorine treatment = poor disinfection, spores surviving
• The fungicide dip tank = loading suboptimal residue, poor infection control
• The wax applicator = poor wax deposition on the fruit = suboptimal residue loading, poor moisture retention, negative impact on quality
• Limit the time from harvest to pack and eventual introduction to the cold chain

Some advice in managing retention fruit
• Have a dedicated person managing this task.
• Fruit should be evaluated every day, decayed fruit noted on the carton and removed.
• These infected fruit should be placed in a plastic bag immediately, and the bag sealed tightly – this is to reduce the risk of releasing inoculum (spores) into the packhouse atmosphere.
• Fruit in retention samples have been treated with fungicides, and holds a serious resistance risk if spores are spread into the packhouse.
• Green mould sporulation inhibition is a very important criterion to note, as the loss of sporulation inhibition is indicative of either fungicide resistance or poor fungicide application. To prevent spores spreading from these infected fruit, fruit exhibiting sporulation inhibition should be kept in sealed transparent plastic bags and incubated for another week to rate sporulation inhibition.

When the sporulation inhibition rating is concluded the bagged fruit must be destroyed (with the bag), well away from citrus orchards and packhouses to prevent spores from entering any production area.
• Do not keep fruit for longer than the shipping period.

Ideally, the retention room should be some distance away from the clean area in the packhouse, and should be totally enclosed with controlled access. This room should be cleaned and treated with a QAC at least once a month.