INTEGRATED PEST MANAGEMENT
Citrus thrips T.G. GROUT
Suppressing citrus thrips populations on the spring growth flush will assist in lowering populations experienced at petal fall. On younger trees a methamidophos or acephate (Spectra Stem) stem treatment is a useful option for this. An alternative may be an organophosphate that cannot be sprayed after petal fall but sprays should be completed before flowers open to reduce any impact on honey bees. If mealybug requires control, the organophosphate could be sprayed at full cover. These treatments will also reduce developing populations of citrus psylla. Avoid using abamectin at this time because it will be needed for citrus thrips control in summer and only three applications are permitted per season.

False Codling Moth S.D. MOORE
It may be very tempting to neglect orchard sanitation in winter, as FCM levels are usually low and Valencias being harvested at this time are generally less susceptible to FCM than some of the earlier season cultivars. However, this would be a big mistake. It has been shown that Valencias can fulfil an overbridging role for FCM from one season to the next. The most effective way in which to ensure the lowest FCM inoculum possible at the start of a season, is to diligently continue sanitising orchards until the previous season is truly over. Most importantly, growers must ensure that no fruit whatsoever remains on trees or on the orchard floor after harvesting is completed.

Bollworm S.D. MOORE
Depending on the region of the country, which influences temperature and blossom phenology, bollworm may begin invading orchards as early as September or even August. Growers should therefore begin weekly blossom inspections for bollworm eggs and larvae no later than early September. Particularly if a biological product, such as DiPel, Helicovir or Bolldex, is going to be used, sprays should be applied as soon as eggs begin to hatch. This can only be determined by vigilant and regular scouting. Honey bee populations will benefit if sprays need to be applied during bloom because these products are harmless to bees.

CROP & FRUIT QUALITY MANAGEMENT
PAUL CRONJE & JAKKIE STANDER
General. It is important to keep managing and monitoring fruit pickers throughout the harvest season in order to reduce cull of export fruit, caused by picking injuries. Pruning of early- and mid-season cultivars should commence as quickly as possible after harvest to allow ample time for flower induction.

Maturity indexing. Maturity indexing is done to predict the rate of change in fruit maturity in order to harvest fruit at a maturity that would maintain optimal commercial shelf life. The aim is to define changes or rate of change in acids and sugars and to build up a database over a number of years for comparisons. Random sampling of fruit every week from each of ten representative trees should start 4 to 6 weeks before the expected harvest date. Titratable acidity is determined by titration with sodium hydroxide, sugar content (Brix) is determined using a refractometer and the sugar to acid ratio calculated. Fruit colour should be read from a colour chart. The aforementioned data should be plotted on a graph in order to determine the optimal picking window. Growers should adhere to the time & temperature protocols for each citrus type to ensure optimal shelf
life of the fruit (Cutting Edge No. 99). It is important to maintain good records of the maturity indicators over a number of years, in order to identify and possibly manipulate possible problems associated with internal and external quality parameters.

Degreening and postharvest rind disorders. The two publications "Common Defects Associated with Degreening of Citrus" by Andy Krajewski and Tim Pittaway and “Postharvest Rind Disorders of Citrus Fruit” by Paul J.R. Cronje are a must for any grower. Both are available from CRI. Contact Bella Thulare at 013 759 8000 or bella@cri.co.za.

Pruning of early and late cultivars should be done as soon as possible after harvest. All of the following should be removed during pruning: old, broken and dead shoots/twigs; weak and entangled shoots crossing each other; and rootstock regrowth (water shoots). Removal of all dead wood is important to reduce fruit blemishes and reduce the inoculum of latent pathogens which cause postharvest decay. A light intensity level of at least 30% of full sunlight is necessary for optimal photosynthesis, and sufficient light intensity levels also improve fruit colour development. In dense and old trees, light intensity inside the tree canopy can drop to below 30% and adversely affect fruit set and size. At least one "window" cut should be made to allow for adequate light distribution to improve bearing wood within the tree canopy. An increase in photosynthesis and light distribution will promote increased fruit size and internal fruit quality, better fruit colour, increased rind condition and less variation in fruit quality within the canopy. Pruning should be used as a thinning technique by pruning more heavily after a light crop (if a heavy crop is expected in the subsequent season) and when the orchard has a history of alternate bearing. A follow up of regrowth management in the summer is critically important to maintain light management throughout the season. Proper pruning also improves spray penetration, leading to effective control of target pests and diseases. This is especially important for the effective control of phytosanitary pests and diseases. Pruning tools should always be sanitised on a regular basis with a 10% Jik solution to prevent spreading of viral diseases, and should be done at least after each row, and when moving from one orchard to another.

One or two pre-bloom foliar urea applications (low biuret urea at 1%) should be applied for uniform flowering and fruit set, especially when leaf N levels are low and a light blossom is expected. If leaf N levels are sufficient, consider replacing the foliar urea application with a 1.5% KNO3 application, only if leaf K levels are below optimum.

Fruit set treatments according to cultivar requirements need to be applied. A general guideline cannot be given as fruit set treatments differ by cultivar and, in many cases, by orchards depending on the previous crop load. Specific treatments include the application of gibberellic acid (GA3) and trunk or branch girdling, especially for weakly parthenocarpic cultivars that have a poor set. Girdling during full bloom improves set, as the removal of bark temporarily restricts carbohydrate allocation to roots and allow for utilization by flowers. Be careful not to girdle too deep into the trunk, or to remove a strip of bark. Moisture stress should be avoided at all costs during full bloom, fruit set and early fruit growth, as these periods are characterized by the cell division stage of fruit development, during which water supply is of critical importance.

GEÏNTEGREERDE BEMESTING J.T. VAHRMEIJER

Stikstofbemesting van Sitrus

Aan die einde van die groei-seisoen

1. Blaar en grondmonsters moes aan die einde van die groei-seisoen geneem word (Februarie tot Mei).
2. Resultate van die blaar- en grondontledings tesame met boordiligting (ouderdom van bome, onderstam, kultivar, verwaagte opbrengs, ens.) word gebruik vir bemestingsaanbevelings.

Waar mikro-spute of enige ander stelsel behalwe druppers gebruik word:

1. Begin met stikstoftoedienings in Julie met die uitsondering van die Wes-Kaap en Hartswater wat in Augustus begin.
2. Afhangende van die klei-inhoud van die grond word die stikstof tussen 1 en 4 toedienings verdeel.

Waar druppers gebruik word:

1. Begin met die stikstoftoedienings in Julie met die uitsondering van die Wes-Kaap en Hartswater wat in Augustus begin.
2. Verdeel die volumes wat per maand aanbeveel is in ten minste twee toedienings.
3. Stikstoftoediening geskied volgens die phenologiese stadium van die boord. As breë riglyn kan die volgende gebruik word:

<table>
<thead>
<tr>
<th>Periode</th>
<th>Phenologie</th>
<th>N (% van totale toediening)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julie</td>
<td>Seldifferentiasie en seldeling</td>
<td>25</td>
</tr>
<tr>
<td>Augustus</td>
<td>Knopbreek, blom en vrugset</td>
<td>25</td>
</tr>
<tr>
<td>September</td>
<td>Vrugset en selgroei</td>
<td>25</td>
</tr>
<tr>
<td>Oktober</td>
<td>Vrug-groei</td>
<td>15</td>
</tr>
<tr>
<td>Nov/Des</td>
<td>Vrug-groei</td>
<td>10</td>
</tr>
</tbody>
</table>

Blaarbespuitings:

1. Dien ureum toe aan blaarbespuiting in Julie om vrugset te bevorder of na Oktober vir stikstof-aanvulling.
2. Die kritiese vereistes vir suksesvolle blaarvoeding is die kontaktyd wat die blare nat bly, druppelgrootte en die konsentrasie van die voedingselement in die spuit-oplossing.
Verwag top kwaliteit vir uitvoer met Cabrio®

Suid-Afrikaanse sitrus produsente het bevestig dat met Cabrio® – die BASF AgCelence®-sitrus oplossing – kry jy die beste opbrengs op belegging wat bydra tot uitstekende plaasbestuur, jaar na jaar!

Cabrio® is nie net ‘n uitstekende sietbeheer produk vir sitrus swartvlek (Guignardia citricarpa) nie, jy kan ook fisiologiese voordele verwag vir die beste kwaliteit en optimale uitpak. Ons noem dit die AgCelence® effek:

- Verhoogde plantgroeiëdoeltreffendheid
- Verhoogde verdraagsaamheid teen stremming – verlengde vrugdrag van ouer bome
- Meer eenvormige vruggroottes wat optimale uitpak verseker

Cabrio® lewer die beste kwaliteit sitrus vir die uitvoer mark.
Om die loging van stikstof te beperk kan die volgende gedoen word:
1. Dien stikstof in die middel van of aan die einde van die besproeiingsiddiklus toe.
2. Voorkom ‘n oormaat van stikstof in die grondoplossing. Stikstofkonsentrasies wat hoër is as 150-200 mg/L het geen addisionele voordeel nie. Oormaat stikstof lei tot moontlike loging van die stikstof en moontlike probleme met vrugkwaliteit.
3. Stikstoffoeding moet verkieslik aan die einde van die groeiseisoen gestaak word sodat die stikstofinhoud in die grond gedurende die wintermaande kan afneem.
4. Die regte hoeveelheid water moet toegedien word tydens besproeiing. Dit is onvermydelik dat ‘n sekere hoeveelheid stikstof geloog word tydens besproeiing, maar oor-besproeiings versnel die proses en ‘n groot hoeveelheid stikstof kan verby die wortelsone geloog word. Reënval moet ook in ag geneem word tydens besproeiingskedulering.

Nitrogen fertilisation of Citrus

At the end of the growing season:
1. Leaf and soil samples should have been taken between February and May.
2. Results from the soil and leaf analyses with additional information such as tree age, tree vigour, expected yield rootstock, etc. are used to compile a fertiliser programme.

When micro-jets or any other system except drippers are used:
1. Start with nitrogen fertilisation in July with the exception of the Western Cape and Hartswater which should start in August.
2. Split the nitrogen application in one to four portions, depending on the clay content of the soil.

When drip irrigation is used:
1. Start with nitrogen fertilisation in July with the exception of the Western Cape and Hartswater which should start in August.
2. Split the volumes recommended per month into at least weekly applications. Ensure that the water and fertilisers do not penetrate deeper than the upper root zone (30-40 cm).

<table>
<thead>
<tr>
<th>Period</th>
<th>Phenology</th>
<th>N (% of total application)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>Cell differentiation and start of cell division</td>
<td>25</td>
</tr>
<tr>
<td>August</td>
<td>Bud break, flowering and fruit set</td>
<td>25</td>
</tr>
<tr>
<td>September</td>
<td>Fruit set and cell growth</td>
<td>25</td>
</tr>
<tr>
<td>October</td>
<td>Fruit growth</td>
<td>15</td>
</tr>
<tr>
<td>Nov/Dec</td>
<td>Fruit growth</td>
<td>10</td>
</tr>
</tbody>
</table>

Foliar spray of nitrogen:
1. Spray the urea in July to improve fruit set and after October to supplement nitrogen.
2. The critical requirements for successful foliar sprays are contact time, droplet size and concentration of the nutrient element in the spray solution.

Four measures can be used to prevent or minimise the downward movement of nitrate:
1. Inject nitrate in the middle of, or late, in an irrigation event.
2. Avoid excessive concentrations of nitrate in the soil solution. Nitrate concentrations greater than 150-200 mg/L don’t provide any additional benefit, and supplying more N fertiliser simply increases the risk of leaching by successive irrigation or rainfall events. Oversupplying N can also lead to fruit quality issues.
3. Complete the N supply programme by the end of the growing season to allow depletion of nitrate in the soil by winter.
4. Ensure that only the right amount of water is applied. Some movement of nitrate may be inevitable with each irrigation cycle, but overwatering is likely to speed up that process and move nitrate beyond the root zone. Allowing for expected rainfall when calculating the depth of water to apply will also help reduce the likelihood of leaching.

GRONDEDRAAEGDE SIEKTES

M.C. PRETORIUS & JAN VAN NIEKERK

Aalwurms

Grond- en wortelmonsters kan in die lente getrek word en na die Diagnostiese Sentrum in Nelspruit gestuur word vir ontleding sodat die aalwurmpopulasie in die wortels bepaal kan word. Die resultaat sal dien as ‘n bestuurshulpmiddel om ‘n koste doeltreffende aalwurmbeheerstrategie daar te stel.

Die gebruik van chemiese aalwurmdoders vir die beheer van die sitrusaalwurm word nie aanbeveel alvorens ten minste 30 mm reën geval het nie. Elke aalwurmdodertoeding behoort met ‘n behoorlike besproeiing opgevolg te word om te verseker dat die middels deeglik deur die grondprofel genees word. Toedienings behoort slegs volgens etiketaanbevelings toegeëen te word. Afwykings van die geregistreerde dosisse, om kostes te bespaar, lei tot oneffektiwiteit. Dit is belangrik om ‘n program te volg, een aalwurmdodertoeding per seisoen is ‘n mors van geld!

Phytophthora

Phytophthora wortelrot – die gebruik van fosfonaatprodukte is ‘n uiers effektiewe en bekostigbare beheermaatregel wat suksesvol deur produsente gebruik word. Dit is van uiterste belang dat die
etiket deeglik bestudeer word asook die waarskuwings voordat die produk gebruik word om effektiviteit en fitoktisiteit te voorkom. Indien kraagvrotletse voorkom kan ‘n stamverf of blaarbepuing aangewend word, drie aanwendinge per seisoen met 8 weke intervalle. Vir wortelvrotbeheer word drie blaarbepuings, met 8 weke intervalle aanbeveel. Dit word sterk aanbeveel om nuwe aanplantings en nie-draende bome op ‘n fosforaat-program van drie aanwendinge per jaar, twee maande uitmekaar, te hou om gesonde wortel-ontwikkeling te verseker. Prosusente word gemaan om seker te maak dat bome nie oorbesproei word nie.

FRUIT AND FOLIAR DISEASES PROVIDENCE MOYO

Alternaria core rot

Alternaria core rot, also known as navel-end rot and black rot, occurs in all areas of southern Africa. The disease is most prevalent on those citrus cultivars such as navels and Clementines characterised by the presence of a secondary fruit called the fruit-navel, which varies in size and develops at the styal end of the primary or main fruit. These fruitlets are extremely sensitive to environmental stress conditions during early stages of development and are therefore also prone to diseases such as navel-end rot and physiological disorders.

Alternaria core rot is linked to large fruit-navels or to the abnormal growth of the secondary fruit into primary-fruit locules, which lead to the formation of points of entry through which fungi can penetrate to form infections that remain quiescent until favourable conditions stimulate further fungal growth. The style and stigma of navel blossoms are Milky white at first and then turn light brown in colour and abscise cleanly. This happens one week after petals have dropped and young fruit are ± 8 mm in size. The two sets of stylar tissue present in the primary and secondary fruit locules can be injured during the blossom period if harsh weather conditions prevail for one or more days (hot days >25°C), and low relative humidity (<20%) followed by heavy dew during the evenings. This causes the outer or primary style to turn brown and dry out, while the inner or secondary style remains unaffected inside the outer style and continues to develop and swell in size to result in longitudinal cracks in the outer tissue. The longitudinal cracks enlarge as the orange increases in size. The inner ovary projects even more as the orange approaches maturity. This results in a large, irregular-shaped navel-end and creates an ideal site for *Alternaria* infections.

Score (50 ml/100 L water) and Folicur (80 ml/100 L water) are registered for control of the disease.

Botrytis on lemons

The role played by Botrytis and the damage that it can do to lemon fruit drop and the formation of ridging of the rind is still not clear. Damage can be caused during blossom on lemon petals when prolonged wetting and cool weather occur simultaneously. Producers in the Eastern Cape enlisted on the Adcon system can make use of their early warning forecasts for Botrytis. Benomyl is the most effective fungicide to control this fungus and should be sprayed at the balloon stage during blossom which can also form part of the black spot control programme.

POST HARVEST PATHOLOGY – WASTE PREVENTION

W. Du Plooy, K.H. Lesar & P.H. Fourie

By this time of the citrus season all processes are in full motion. The strain of the season may be taking its toll on management and this may lead to poor management of critical control points. Below are a few suggested critical control points that should be well managed.

Critical control points for improved postharvest disease management

- Monitor the incidence of insect activity in the orchards and institute appropriate measures to reduce their populations, especially fruit fly and false codling moth numbers that could increase with hotter weather
- Monitor orchard sanitation. Advise the orchard managers and producers if sanitation is being improperly managed or neglected, as this can also fulfil an overbridging role for FCM from one season to the next. The most effective way in which to ensure the lowest FCM inoculum possible at the start of a season, with associated fruit damage and decay, is to diligently continue sanitising orchards until the previous season is truly over.
- Monitor injuries to fruit during picking, handling and transport to the packhouse. Advise orchard managers and/or producers accordingly. Keep the time from harvest to the first fungicide treatment to a minimum, it is strongly recommended to treat at least within 24 hours after picking.
- Ensure that all fungicide applications are replaced frequently as per protocol and kept clean
- Keep the fruit dumping site where fruit will enter the packhouse as clean as possible
- Ensure proper removal of any rotten fruit before sanitising and treatment of the fruit
- Have a sanitation action (total loss chlorine spray) between fruit sorting and the first fungicide application
- Manage the concentration of imazalil in the fungicide dip tank by doing regular titrations
- Do not wax wet fruit – this could result in a severe risk to fruit quality
- Apply the correct amount of wax onto the fruit (i.e. 1.0 – 1.5ℓ per ton of fruit) and ensure even spread of the wax over the whole fruit
- Reduce the time from harvest to cold chain storage
- Packhouse sanitation should be a continuous process and not just a once a day or week activity
- Store fruit destined for the juicing factory as far away from the packhouse as possible and have them removed as soon as possible
Below is the same checklist for chemical application from last year with a few amendments.

Checklist for chemical application

Chlorine application
- Solution pH: 6 - 7
- Chlorine concentration: 75 – 100 ppm (free active chlorine)
- ORP: 800 mV

Fungicide dip tank
- Imazalil concentration: 500 ppm
- Solution pH: not higher than 6
- Exposure time: 1 – 3 minutes in a solution at pH3 or not longer than 45 seconds in a solution at pH6
- Maintain the concentration by following the advised imazalil top-up protocol

Wax application
- Fruit should be dry when they reach the wax applicator
- Wax load should be between 1.0 and 1.5 litres per ton fruit depending on manufacturers’ recommendations

Over application can lead to MRL exceedance
- Under application will lead to poor fruit quality and poor disease control
- The wax solution should be agitated continuously (24 hours a day, 7 days a week)

- Thiabendazole tends to precipitate to the bottom of the wax drum and cannot be fully re-suspended
- Drying tunnels after the wax applicator should not be overheated

- Obtain the optimal temperature for the specific wax from the wax manufacturer

The correct drying of the wax is crucial to ensure that the desired effect is gained.

Santan Lugvaart-polis

Met onbemande lugvoertuie (OLV’s) of hommeltuie wat al hoe meer in verskeie sektore van die ekonomie wêreldwyd gebruik word, het onlangse versekeringsseise in Suid-Afrika getoon dat om ‘n hommeltuig ‘te verloor’ beslis nie so verregaande is as wat ‘n mens sou dink nie.

Gebruik in landbousektor

In Suid-Afrika word hommeltuie onder meer in die landbousektor gebruik, vir die bestuur van wild om die krimpende dierebevolking van uitwissing te probeer red en om kraggrade in stand te hou. Om gepaste korttermyn versekeringsdekking te bekom, moet private en kommersiële hommeltuigoperateurs die wette nakom wat die gebruik van hierdie onbemande lugvaartuie beheer. James sê hommeltuigoperateurs wat dit vir ontspanning gebruik, moet spesifiek kennis neem dat die versekering onder die meeste algemene persoonlike lyne-produkte beperkte vlugdekking bied en dekking sal verleen vir die verlies van die hommeltuig en eise vir gemeenregtelike aanspreeklikheid. Dekking vir sambreelaanspreeklikheid en persoonlike regsaanspreeklikheid is egter uitgesluit,” sê James.

Die Santam Lugvaart-polis verskaf volledige en omvattende dekking vir die hommeltuig, ongeag of dit gebruik word of nie. Dit sluit in omvattende derde-party dekking teen die perk wat die kliënt verkies.